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MVAR Causality Simulations

Granger Causality

Idea:

Preoprcessing

Temporal preceding signals can be causal for another signal.
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Causality Measures

Based on Granger causality several measures to tackle the question
of directionality in Neuroscience have been proposed:

» Directed Transfer Function (DTF) (Kaminski et al. 1991)

» Direct Directed Transfer Function (dDTF) (Korzeniewska et
al. 2003)

» Partial Directed Coherence (PDC) (Baccala et al. 2001)

» Squared Partial Directed Coherence (sPDC) (Astolfi et al.
2006)

» H - Transfer Matrix
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Multivariate Autoregressive Model

MVAR:
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Transfer to the frequency domain:

p
_ Z A(L)e—j27rfAtL
L=0

Transfer function:



MVAR Causality

Directed Transfer Function

2o |H(A)I

Yij
T Y et [Him(F)2

» DTF describes the proportion of information transfer from
channel j to channel i with respect to all information, which
flow to channel i (Kus 2004, Kaminski 2001).

» Takes values between 0 and 1

Problem:
No distinction between direct and indirect connections

Solution:
» Direct Directed Transfer Function (dDTF)

» Partial Directed Coherence (PDC)
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Partial Directed Coherence

PDC describes the proportion of information transfer from channel
j to i with respect to the total information flow to channel j
(Baccala and Samechima 2001).
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» Takes values between 0 and 1

Tij

Advantage

Distinction between direct and indirect connections

Astolfi et al. 2006 suggested in addition the squared partial
directed coherence(sPDC)
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Evaluation of the causality measures

» Comparison of the different methods

v

Determination of a significance level

v

Influencing factors such as data length and noise level

v

Different data types

v

Preprocessing
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Model to test the causality measures

Parameters to be varied

» Data Length:
100 to 1000 in steps of 100
1000 to 13500 in steps of 500

» Model Order:
1 to 49 in steps of 2

» Noise Level:
0 to 10 in steps of 0.2

» Coupling Strength:
Datatypes 0.2 to 2 in steps of 0.2

EEG, MEG, EMG and LFP

Figure: Kus Model
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Significance

Shuffling of the data:
» Time course of the data randomized

» Determination of causality measure

v

200 repetitions

v

99 % percentile

Leave One Out Method (LOOM)
» One data segment left out
» Determination of causality measure
> As many repetitions as data segments
» 99 % percentile
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Results with shuffling

Random Permutation

Data length Model order Noise level Coupling strength
missed [false positive] missed [false positive] missed |[false positive] missed [false positive]
PDC |«
sPDC

z 3 3 ™ B @ B 020 W 40

3 Te02 05 12 18
Datalengh 10 Datalength 10 Model order Model order

Couping srength Gouping srength

Florin et al., Journal of Neuroscience Methods 2011
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Results with LOOM

LOOM

Data length

Simulations

Model order

Noise level

Coupling strength

Preoprcessing
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Florin et al., Journal of Neuroscience Methods 2011
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Summary

Dependence on the varied parameters

> Increasing data length leads to better results

v

Only LOOM shows dependence on model order

v

No dependence on noise level

v

Coupling strength: Increasing differences in signal to noise
ratio lead to wrong detections

LOOM vs. Shuffle
Obtaining the significance with shuffling leads to better results.

Recommended Method
The most reliable results are obtained with the sPDC.

Florin et al., Journal of Neuroscience Methods 2011
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Preprocessing

AR-Model

oo
Ye = E ajXp—j + Ut
=0

Estimate of a in y; = Zf.io ajXe—j + U

_ gx(L) _ covariance

a(L)

L) variance

Lag Operator

Lag-Operator L shifts a time series by one point in time.

Preoprcessing
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Basics

Wold infinite moving average representation

Every covariance-stationary process has an infinite moving average
representation:

Xt = Z bjUt_,' = B(L)Ut
i=0
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Covariance generating function

gx(L) = a?B(L™1)B(L) mit: B(L) = i bjlJ

j=—00

a with only positive lags
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Preoprcessing
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Filtering

Filtering and Lag-representation

o0
x{ = f(L)xe mit: f(L)= > £/

j=—00

Example: Filtering with a moving average

Yt = %Xt—i—l + %Xt + %Xt—l
ye =x(3L71+ 310+ 31)
ye = D(L)x
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Filtering

Covariance-generating function after the application of a filter

g,r = f(2)f(z71)gy(2)
gyrxr = f(2)f(z71)g(2)

AR representation of the filtered function

o0
x[ = Z ajfxtf_j + U
j=0

Same regression results only if:

aj:aj
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. — of?
aj=a;!

Insertion of the terms for the covariance matrix:

an(L) — [gyfxf]

ng
FIL)F(L™ )gyx(L) yx (L)
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gyrr = F(L)F(L™1)gyx(L)
g = c(L)* c(L™) = F(L)F(L™H)B(L)B(L™)
In general the following does not hold: c(L)=f(L)B(L)
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Simulation Filtering

Butterworth, Chebychev type | + I, and elliptic filter

=
S

gain in %
o
|I

0 100 200
frequency [Hz]

phase-neutral and non phase-neutral filters
» 1 Hz high pass
» 80 Hz low pass
» 160 Hz low pass

Filter order

50 Hz line noise

Simulations

decimation and interpolation

Preoprcessing
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Results: sPDC
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Florin et al., Neuroimage 2010
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Influence of the filter order and phase-neutral filtering
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Florin et al., Neur0|mage 2010



MVAR Causality Simulations Preoprcessing

Different Low-Pass Filters
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Florin et al., Neuroimage 2010
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Decimation and interpolation

Temporal aggregation may result in the loss of information
contained in the variance-covariance matrix (Breitung and

Swanson 2002).
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Florin et al., Neuroimage 2010
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Simulations

Recommendation pre-processing

Preoprcessing

A 4

Causality
analysis

No

A

Raw data
No
artifact?
Yes
v
Movement NO Current
artifact artifact
Yes Yes
Y .
Non-phase neutral .
high-pass filter with Notch filter

low filter order

Florin et al., Neuroimage 2010




Preoprcessing

Summary

Preprocessing
> Most filtering techniques will lead to false detections.

> Interpolation and downsampling will also lead to false
detections.

Determination of the significance level

Both Leave one out method and random permutation yield similar
results.

Recommended multivariate method

Squared partial directed coherence in combination with leave one
out method

Florin et al., Neurolmage 2010; Florin et al., J Neuroscience Methods, 2011



Thank you for your attention!
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