▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Guidelines for the use of multivariate Granger causality

Esther Florin

December 10th, 2014

MVAR Causality

Simulations

Preopreessing

Granger Causality

Idea:

Temporal preceding signals can be causal for another signal.

Causality Measures

Based on Granger causality several measures to tackle the question of directionality in Neuroscience have been proposed:

- Directed Transfer Function (DTF) (Kaminski et al. 1991)
- Direct Directed Transfer Function (dDTF) (Korzeniewska et al. 2003)
- Partial Directed Coherence (PDC) (Baccala et al. 2001)
- Squared Partial Directed Coherence (sPDC) (Astolfi et al. 2006)
- H Transfer Matrix

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Multivariate Autoregressive Model

MVAR:

$$\mathbf{X}(t) = \sum_{L=1}^{p} \mathbf{A}(L) \mathbf{X}(t-L) + \mathbf{E}(t)$$

Transfer to the frequency domain:

$$\mathbf{A}(f) = \sum_{L=0}^{p} \mathbf{A}(L) e^{-j2\pi f \Delta t L}$$

Transfer function:

$$\mathbf{H}(f) = \mathbf{A}(f)^{-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Directed Transfer Function

$$\gamma_{ij}^2 = rac{|H_{ij}(f)|^2}{\sum_{m=1}^k |H_{im}(f)|^2}$$

- DTF describes the proportion of information transfer from channel j to channel i with respect to all information, which flow to channel i (Kus 2004, Kaminski 2001).
- Takes values between 0 and 1

Problem:

No distinction between direct and indirect connections

Solution:

- Direct Directed Transfer Function (dDTF)
- Partial Directed Coherence (PDC)

Partial Directed Coherence

PDC describes the proportion of information transfer from channel j to i with respect to the total information flow to channel j (Baccala and Samechima 2001).

$$\pi_{ij}(f) = \frac{A_{ij}(f)}{\sqrt{\sum\limits_{k=1}^{N} A_{ki}(f) A_{kj}^*(f)}}$$

Takes values between 0 and 1

Advantage

Distinction between direct and indirect connections

Astolfi et al. 2006 suggested in addition the squared partial directed coherence(sPDC)

Evaluation of the causality measures

- Comparison of the different methods
- Determination of a significance level
- Influencing factors such as data length and noise level
- Different data types
- Preprocessing

Model to test the causality measures

Figure: Kus Model

Datatypes

EEG, MEG, EMG and LFP

Parameters to be varied

- Data Length: 100 to 1000 in steps of 100 1000 to 13500 in steps of 500
- Model Order:
 1 to 49 in steps of 2
- Noise Level:
 0 to 10 in steps of 0.2
- Coupling Strength:
 0.2 to 2 in steps of 0.2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Significance

Shuffling of the data:

- Time course of the data randomized
- Determination of causality measure
- 200 repetitions
- 99 % percentile

Leave One Out Method (LOOM)

- One data segment left out
- Determination of causality measure
- As many repetitions as data segments
- ▶ 99 % percentile

(ロ)、

Results with shuffling

Random Permutation

Florin et al., Journal of Neuroscience Methods 2011

Results with LOOM

LOOM

Florin et al., Journal of Neuroscience Methods 2011 ・ロト・西ト・ボッ・ボッ・ いくの

Summary

Dependence on the varied parameters

- Increasing data length leads to better results
- Only LOOM shows dependence on model order
- No dependence on noise level
- Coupling strength: Increasing differences in signal to noise ratio lead to wrong detections

LOOM vs. Shuffle

Obtaining the significance with shuffling leads to better results.

Recommended Method

The most reliable results are obtained with the sPDC.

Florin et al., Journal of Neuroscience Methods 2011

Preprocessing

AR-Model

$$y_t = \sum_{j=0}^{\infty} a_j x_{t-j} + u_t$$

Estimate of a in $y_t = \sum_{j=0}^{\infty} a_j x_{t-j} + u_t$: $a(L) = \frac{g_{yx}(L)}{g_x(L)} = \frac{covariance}{variance}$

Lag Operator

Lag-Operator L shifts a time series by one point in time.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Basics

Wold infinite moving average representation

Every covariance-stationary process has an infinite moving average representation:

$$x_t = \sum_{i=0}^{\infty} b_j u_{t-i} = B(L)u_t$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Covariance generating function

$$g_x(L) = \sigma^2 B(L^{-1}) B(L)$$
 mit: $B(L) = \sum_{j=-\infty}^{\infty} b_j L^j$

a with only positive lags

$$a = [rac{g_{yx}(z)}{B(L^{-1})}]_+ rac{1}{B(L)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Filtering

Filtering and Lag-representation

$$x_t^f = f(L)x_t$$
 mit: $f(L) = \sum_{j=-\infty}^{\infty} f_j L^j$

Example: Filtering with a moving average

$$y_t = \frac{1}{3}x_{t+1} + \frac{1}{3}x_t + \frac{1}{3}x_{t-1}$$

$$y_t = x_t(\frac{1}{3}L^{-1} + \frac{1}{3}L^0 + \frac{1}{3}L)$$

$$y_t = D(L)x_t$$

Filtering

Covariance-generating function after the application of a filter

 $g_{y^f} = f(z)f(z^{-1})g_y(z)$ $g_{y^fx^f} = f(z)f(z^{-1})g_{yx}(z)$

AR representation of the filtered function

$$x_t^f = \sum_{j=0}^\infty a_j^f x_{t-j}^f + ilde{u}_t$$

Same regression results only if: $a_j = a_j^f$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$a_j = a_j^f$$
?

Insertion of the terms for the covariance matrix:

$$\begin{aligned} a_j^f(L) &= \left[\frac{g_{y^f \times f}}{g_{x^f}}\right] \\ \Rightarrow a_j^f(L) &= \left[\frac{f(L)f(L^{-1})g_{yx}(L)}{c(L^{-1})}\right]_+ \frac{1}{c(L)} \neq \left[\frac{g_{yx}(L)}{B(L^{-1})}\right]_+ \frac{1}{B(L)} = a_j \\ g_{y^f \times f} &= f(L)f(L^{-1})g_{yx}(L) \\ g_{x^f} &= c(L) * c(L^{-1}) = f(L)f(L^{-1})B(L)B(L^{-1}) \\ \end{aligned}$$

In general the following does not hold: c(L)=f(L)B(L)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Simulation Filtering

Butterworth, Chebychev type I + II, and elliptic filter

- phase-neutral and non phase-neutral filters
 - ► 1 Hz high pass
 - 80 Hz low pass
 - 160 Hz low pass
- Filter order
- 50 Hz line noise
- decimation and interpolation

(日) (四) (日) (日) (日)

Results: sPDC

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

ж

Influence of the filter order and phase-neutral filtering

・ロト ・四ト ・ヨト ・ヨト

æ

Different Low-Pass Filters

Florin et al., Neuroimage 2010

イロト 不得 トイヨト イヨト

3

Decimation and interpolation

Temporal aggregation may result in the loss of information contained in the variance-covariance matrix (Breitung and Swanson 2002).

Florin et al., Neuroimage 2010

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Recommendation pre-processing

Florin et al., Neuroimage 2010

Summary

Preprocessing

- Most filtering techniques will lead to false detections.
- Interpolation and downsampling will also lead to false detections.

Determination of the significance level

Both Leave one out method and random permutation yield similar results.

Recommended multivariate method

Squared partial directed coherence in combination with leave one out method

Florin et al., NeuroImage 2010; Florin et al., J Neuroscience Methods, 2011

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you for your attention!